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Introduction
Computational finance relies on many different models to provide estimates on 
various financial variables, such as market risk, systemic risk, portfolio optimiza-
tion, and pricing. Since modeling is at the heart of modern finance, it is important 
to judge these models. In literature two metrics are used for this purpose – accuracy 
and precision.

We define accuracy as the ‘goodness’ of the model, or equivalently the bias (the 
bias is the amount of inaccuracy of the average expected value of the model outputs). 
The bias indicates a consistent ‘shift’ in a particular direction from a benchmark. For 
example, if an options pricing model consistently under-evaluates an option, the bias 
would be the difference between the predicted and actual prices. A measure of the 
accuracy helps determine the model’s shortcomings with respect to the chosen ben-
chmark, and thus reflects the hypotheses and assumptions that are used to build the 
model. Decision to integrate the model into a practitioner’s toolkit is usually done 
based on the accuracy.

Precision provides an estimate of the consistency of a model to give a reliable 
output on multiple simulations with slightly noisy input parameters. Unlike accu-
racy, there is no reference model or benchmark against which this quality can be 
judged, and only the repeatability (under slightly different inputs) can be checked. In 
essence, the precision reflects the risk of the model. If the model is the risk measure, 
the precision will be the risk of the risk measure, henceforth called model risk.
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Figure 1. Accuracy and precision – comparison. The blue central dot is the bench-
mark, and the orange dots are the model estimates

Source: own study.

Figure 1. shows the differences between accuracy and precision, which highli-
ghts the use of our definitions of these two qualities. In the first case we see a case of 
having low precision and accuracy, where the model completely fails to be consistent 
and capture the correct result, thus failing to be of any theoretical or practical value. 
The second case shows a model of high accuracy and low precision, where the ave-
rage of multiple simulations correctly captures the benchmark. This is of theoretical 
value, but less useful in a practical setting. In the third case we have a model with 
high precision and low accuracy, which indicates a consistent bias in the model from 
the benchmark. This model is of high use for theory and practice, since it can be con-
fidently adjusted for implementation, and provides a hint of a shortcoming in the 
model for theoreticians. The final case is the best-case scenario, where the model is 
both, accurate and precise, thus of high value for research and practice. In this case 
the model itself acts as a benchmark.
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In this study we focus on the accuracy and precision aspects for Value at Risk 
(VaR) models, extending from an earlier work (Pasieczna, 2019). VaR, recommen-
ded by the Basel II agreement (Basel Committee on Banking Supervision, 2004), is 
frequently used to estimate potential losses with a certain confidence. In common 
usage, there are three ways to measure VaR – the historical method, the Monte Carlo 
method and GARCH (Holton, 2014).

This paper focuses on measuring the model risk for VaR for different configu-
rations (confidence levels). The models used are the Monte Carlo technique (Pasiec-
zna, 2019), the historical simulation, and GARCH (Danielsson et al., 2016). The 
changes to the input parameters are made by choosing different historical periods. 
Our work is tested on four leading European banks.

The paper is divided as follows. The following sections gives a brief overview 
of the theoretical and computational methods used in our work. Section 3. deals with 
the simulation results for the measurements of VaR risk for the different banks. We 
end with our conclusions.

1. Theory and Computational Methods
The dataset consisted of daily close prices between 2002 and 2019 for four banks: 
BnP Paribas, Credit Agricole, Commerzbank and Deutsche Bank and were obtained 
from the official websites of these institutions.

1.1. Value at Risk
VaR is defined as the maximum possible loss, or equivalently the most “negative” 
price change, whose probability is within a pre-defined confidence level over a pre
-defined time horizon. The choice of a confidence level and time horizon constitutes 
a VaR configuration. To better understand: A portfolio with a 1-day VaR of 700 EUR 
with a 95% confidence implies that the portfolio has a 5% chance of losing at least 
700 EUR in one day. Equivalently, there is a 95% chance that the losses over one day 
will be smaller than 700 EUR for the given portfolio.

This definition of VaR is non-constructive in that it specifies a property that 
VaR should have, but not on how to compute VaR. As a result, there are different 
ways proposed to compute it (Holton, 2014). For our purposes we use the histori-
cal simulation, Monte Carlo and GARCH approaches for computing VaR, with the 
focus on two French and two German banks. Unlike the example presented earlier, 
we estimate the VaR as relative price changes to make it comparable with the returns 
across time.

1.2. Monte Carlo Methods
We chose the Monte Carlo (MC) method (Glasserman, 2003) to simulate the bank 
stock relative returns for a single trading day. The main advantage of the MC method 
is that one can simulate the different sources of uncertainty that affect the stocks 
by drawing random numbers from predetermined probability distributions. As 
such, the model limitations are mainly due to the choice of the distributions and 
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the computational costs associated with the generation of statistics. MC methods 
have been applied in various areas of finance, such as portfolio optimization and risk 
analysis.

Our approach uses Monte Carlo to simulate the uncertain relative price chan-
ges and the uncertainty is described through the mean and standard deviation deter-
mined by real historical data. The VaR is then simply the quantile of these simula-
ted price changes across multiple MC runs corresponding to the configuration (e.g. 
95%). The algorithm is as follows:
1. For a given bank on every day, estimate the mean and standard deviation, 

based on the past historical data on relative price changes. Three historical 
periods were used: 125, 250, 500 trading days (approximately 0.5, 1 and 2 
years).

2. Simulate the next day’s relative returns by drawing random numbers from 
a Gaussian distribution with the precalculated mean and standard deviation. 
For each day 50000 numbers (MC iterations) were drawn.

3. Rank the simulated relative returns in a descending manner and choose the 
quantile corresponding to the confidence level as the VaR. Two confidence 
levels were tested, 95% and 99%.
Once the VaR was computed for the banks at the given confidence levels with 

the three historical periods, we estimated the VaR model risk, as described in Sec-
tion 2.5.

1.3. Historical Simulation
We also use the standard historical simulation (HS) to compute the VaR for different 
banks. HS is a less sophisticated approach that assumes that the distribution of the 
returns is completely given by past returns (Holton, 2014). It simply considers the 
quantile of the past relative returns corresponding to the VaR confidence level as the 
VaR. As in the MC approach, we compute VaR for three historical periods, so as to 
estimate the accuracy and precision metrics.

1.4. GARCH
The third model we studied is Generalized Autoregressive Conditional Heteroskeda-
stic (GARCH) model, with p = q = 1, i.e. the GARCH(1, 1) process, and the AR(1) 
process applied to the relative returns (Ferenstein, Gąsowski, 2004). The AR(1) resi-
duals passed to the GARCH model are assumed to be normal. This is an extension 
of the models originally proposed by Engle (Engle, 1982) and Bollerslev (Bollerslev, 
1986). In our study we use this approach to compute the conditional volatility of the 
next day, from which we estimate the VaR. As with the other models, the VaR is com-
puted daily using data from past rolling historical periods.

1.5. Model Risk Measures
In this work we use the accuracy as a measure of the performance of the model 
on average and the precision as the basis for the model risk measures. There is an 
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inherent risk in using an inaccurate model, namely in the form of ‘known unknowns’ 
and ‘unknown unknowns’, however we do not focus on accuracy as a foundation of 
a model risk measure, but more as a performance evaluation metric. For our pur-
poses, the accuracy metric is simply the percentage crossing, i.e. the fraction of the 
number of days when the realized loss is higher than the average VaR for a given con-
figuration (averaged estimates across different historical periods). We also compute 
the Kupiec Proportion of Failures test to judge the percentage crossings. A Kupiec 
POF value of 0 is considered ideal.

Two measures were developed from the precision – the spread across VaR 
estimates, and the ratio of the highest to lowest VaR estimates. note that the estima-
tes used in these measures always correspond to the same configuration (prediction 
time period and confidence level), but different historical periods. Consider the case 
of computing the spread for a 1-day VaR with a 95% confidence; the spread will be 
the difference between the maximum and minimum of the three VaR estimates obta-
ined from the three historical periods (125, 250, 500 trading days).

Using the spread as a model risk measure is analogous to how the risk of 
a stock investment strategy is its volatility. By having the historical periods varying 
by a factor of two, we essentially determine the response of the model when subject 
to half or twice the amount of data. The spread is represented in the units of the VaR 
itself (in our case, relative price change).

The other model risk measure, the ratio, is defined as the highest to the lowest 
VaR estimates for a given confidence level and prediction time period. This measure 
has already been used to study various systemic risk measures and VaR, while com-
paring different implementations of VaR (Danielsson et al., 2016). However, in our 
case, we refrain from combining the results of the two implementations and stick 
to analyzing the ratios from a single approach only. Our justification for this comes 
from the fact that comparing ratios across different implementations might lead to 
comparing estimates derived from different hypotheses.

The four metrics presented here are used to judge the MC, HS and GARCH 
approaches for estimating VaR, and we present a brief comparison in the next section.

2. Results and Discussion
We present here our simulation results for the 4 European banks, where the 1-day 
VaR is computed at 95% and 99% confidence levels. Estimates from three historical 
periods (125, 250, 500 days) for given confidence levels were used to judge the accu-
racy and precision.
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Table 1. Accuracy and precision metrics for the different VaR configurations based 
on our calculations.
Ideal percentage crossing values for VaR at 95% and 99% are 5% and 1% respecti-
vely. Ideal Kupiec POF values should be 0. Ideal ratio and spread values should be 1 
and 0 respectively

Accuracy
(% crossings)

Accuracy
(Kupiec POF)

Precision
(avg ratio)

Precision
(avg spread)

HS MC G HS MC G HS MC G HS MC G

VAR 
95

BNP  
Paribas 5.531 4.352 4.621 2.338 3.752 1.258 1.407 1.409 1.169 0.011 0.012 0.005

Credit  
Agricole 5.654 3.762 3.859 3.52 14.299 12.051 1.395 1.353 1.171 0.012 0.012 0.006

Deutsche 
Bank 5.654 4.696 4.671 3.52 0.805 0.949 1.397 1.383 1.164 0.012 0.012 0.005

Commerz-
bank 5.261 4.082 4.4 0.572 7.684 3.205 1.423 1.418 1.192 0.014 0.015 0.007

VAR 
99

BNP  
Paribas 1.475 1.451 1.45 8.086 7.325 7.316 1.431 1.406 1.169 0.017 0.017 0.008

Credit  
Agricole 1.426 1.279 1.008 6.581 2.93 0.003 1.474 1.346 1.171 0.019 0.016 0.008

Deutsche 
Bank 1.5 1.623 1.524 8.889 13.409 9.726 1.407 1.381 1.164 0.017 0.018 0.008

Commerz-
bank 1.622 1.402 1.278 13.397 5.888 2.925 1.512 1.411 1.192 0.022 0.021 0.01

Source: own study.

Our results for the accuracy and precision are summarized in Table 1. We 
found that the percentage crossings for the VaR at 95% are higher for HS (between 
5.3 and 5.7%), whereas there are lower for the MC and GARCH models (between 
3.8 and 4.7%). The corresponding Kupiec POF values range between 0.5 and 3.5 for 
HS, 0.8 and 14.3 for MC, and 0.9 and 12.1 for GARCH. For this VaR configuration 
HS simulations seemed slightly more accurate in terms of Kupiec POF than MC and 
GARCH. For VaR at 99%, all models had more than 1% crossings. The correspon-
ding Kupiec POF values were between 6.6 and 13.4 for HS, 2.9 and 13.4 for MC, and 
0 and 9.7 for GARCH. GARCH models gave more accurate results (Kupiec POF) 
than HS and MC for VaR at 99%.

Overall, for the accuracy, it is less clear as to which model outperforms the 
others independent of the VaR configuration. More detailed studies with more banks 
might be useful to judge the significance of these remarks. On the other hand, for 
both VaR configurations, GARCH simulation gave consistently better precision 
metrics than HS and MC. This was seen for both precision metrics. no discernible 
difference was observed between HS and MC precision results.
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To compare the temporal evolution of precision metrics, we plot the indivi-
dual bank’s VaR estimates (in units of relative price change) along with the daily 
spreads and ratios for the 1-day VaR at 99% (Figures 2–5). These plots also allow us 
to study how the various quantities evolve during periods of crises (e.g. 2008) and 
post-crises (before 2020).

In the following figures, we notice that the VaR curves follow closely the shape 
of the envelope of the returns as expected. We also highlight the observation that the 
GARCH models seemed to react quicker than HS and MC, which can be understood 
as an effect of the GARCH model giving more weight to more recent events. During 
the 2008 crisis, we observe more crossings than during periods of relative calm, indi-
cating a degradation of the accuracy during volatile periods. This behavior has been 
reported earlier (Danielsson et al., 2016).

In terms of the precision metrics, the model is considered precise when the 
spread and ratio are as close as possible to 0 and 1 respectively, which would imply 
that the model is not highly dependent on the input parameters (here, historical time 
period). However, in our study we observe that the ratio is never 1, and the spread is 
always greater than 0. This means that the model risk is never completely nullified.

Figure 2. Results for BNP Paribas with 1-Day VaR computed at 99% confidence level. 
The blue, red and green curves refer to the MC, HS and GARCH results. The first 
subplot shows the average VaR along with the relative returns (grey). The second 
subplot shows the ratios between the highest and lowest VaR estimates. The third 
subplot shows the spread (difference between the highest and lowest estimates)

Source: own study.
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Figure 3. Results for Credit Agricole with 1-Day VaR computed at 99% confidence 
level. The blue, red and green curves refer to the MC, HS and GARCH results. The 
first subplot shows the average VaR along with the relative returns (grey). The second 
subplot shows the ratios between the highest and lowest VaR estimates. The third 
subplot shows the spread (difference between the highest and lowest estimates)

Source: own study.

We see an increase in the spreads and ratios after the 2008 crisis. We interpret 
this as a delay in capturing information immediately as well as an interplay between 
different historical periods. In other words, the VaR estimate from the 125-day histo-
rical period will react faster than the estimate with the 500-day historical period, 
leading to an increase in the spread and the ratio. The delay factor is due to the 
requirement of having at least 125 days, which would include days before the crisis. 
We expect the GARCH models to react significantly faster due to their larger weight 
on more recent data. This explains the outperformance of these models over HS and 
MC in terms of precision metrics. Furthermore, we observe that the HS approach 
leads the MC, the reason for which is attributed to the inclusion of actual returns 
(tail events as well) in HS. The MC approach relies on collecting data for building the 
standard deviation and means, which requires much longer waiting periods.

We also observe a ‘bumpy’ structure for the HS curves, specifically promi-
nent in the ratio. These features are due to the nature how the HS approach works, 
by inclusion or exclusion of a single point which might change the quantile suddenly. 
On the other hand, the MC approach does not depend on a single point and is more 
robust to sudden changes. The disadvantage of MC is of course the introduction of 
a much longer reaction time. Finally, the GARCH structure seems to be the most 
volatile (fluctuates the most), which is a result of the quick adjustment.
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Figure 4. Results for Deutsche Bank with 1-Day VaR computed at 99% confidence 
level. The blue, red and green curves refer to the MC, HS and GARCH results. The 
first subplot shows the average VaR along with the relative returns (grey). The second 
subplot shows the ratios between the highest and lowest VaR estimates. The third 
subplot shows the spread (difference between the highest and lowest estimates)

Source: own study.

Figure 5. Results for Commerzbank with 1-Day VaR computed at 99% confidence 
level. The blue, red and green curves refer to the MC, HS and GARCH results. The 
first subplot shows the average VaR along with the relative returns (grey). The second 
subplot shows the ratios between the highest and lowest VaR estimates. The third 
subplot shows the spread (difference between the highest and lowest estimates)
Source: own study.
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Another important point is to notice that the spread and ratio for the three 
approaches are not constant in time. This is most visible in Figure 5. (Commerz-
bank), where the HS ratio can take values as high as 3 or above, indicating that any 
two VaR estimates might differ by a factor of 3 or more. It implies that if a VaR esti-
mate has a value of 10 Euros for the upcoming day, another estimate might predict 30 
Euros or 3.33 Euros. These high values can be reached for all three models. Finally, 
the highest value for the spread or ratio is reached when the returns volatility is small 
post-crises, indicating that the risk is overestimated just after the crisis has passed.

Conclusions
We presented an approach to judge a risk model based on accuracy and precision 
metrics. We proposed using two accuracy metrics as performance evaluators – per-
centage crossings and Kupiec POF, and two precision metrics as model risk measures 
– spread and ratio of the VaR estimates under three different historical periods. We 
tested these on 4 European banks and two VaR configurations under three different 
methods. Our results indicate that all three models performed similarly in terms of 
overall accuracy. With regards to the precision metrics, the GARCH outperformed 
MC and HS models. All models were found to be less precise during the crises and 
just after. The approach presented here is general and can be applied to any kind of 
risk models, such as Expected Shortfall or even systemic risk measures. As perspec-
tives, the comparisons between different VaR methods can be performed on more 
banks and the approach.

Abstrakt

Szacowanie ryzyka modelu VaR w różnych podejściach:  
Badanie na przykładzie banków europejskich
Celem badania było oszacowanie ryzyka modelu wartości zagrożonej ryzykiem 
(VaR), rozumianego jako precyzja, oraz dokładności tego modelu, za pomocą trzech 
metod: symulacji historycznej (HS), Monte Carlo (MC) i uogólnionego modelu 
ARCH (GARCH). W tej pracy do analizy modelu VaR wykorzystano dokładność 
i precyzję. Oszacowania dokładności i precyzji dokonano w ramach trzech podejść 
dla czterech banków europejskich, przy poziomach ufności 95 i 99%. Procentowy 
udział przekroczenia wartości VaR oraz miara POF Kupca zostały użyte do oceny 
dokładności modelu; natomiast stosunek szacunkowych wartości maksymalnych 
i minimalnych VaR oraz rozstęp między tymi wartościami zastosowano do osza-
cowania ryzyka modelu. Wykonano to poprzez zmianę parametrów wejściowych, 
a dokładniej przedziałów estymacji (125, 250, 500 dni). Dokładność sama w sobie 
nie jest wystarczająca do oceny modelu i wymagana jest również precyzja. Ewolu-
cja miary precyzji w czasie wykazała niespójność metod szacowania VaR w różnych 
warunkach rynkowych. W tym artykule skupiono się na koncepcjach dokładności 
i precyzji stosowanych do oszacowania ryzyka modelu wartości zagrożonej (VaR). 
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VaR stanowi podstawę zaawansowanych wskaźników ryzyka, w tym miar ryzyka 
systemowego, takich jak MES i Delta CoVaR, dlatego też zrozumienie ryzyka zwią-
zanego z VaR ma kluczowe znaczenie dla praktyków finansów.

Słowa kluczowe: VaR, Monte Carlo, ryzyko modelu, precyzja, symulacja histo-
ryczna, GARCH

Abstract

Estimating Model Risk of VaR under Different Approaches: Study on 
European Banks
The objective of this research is to estimate the model risk, represented as  preci-
sion, and the accuracy of the Value at Risk (VaR) measure, under three different 
approaches: historical simulation (HS), Monte Carlo (MC), and generalized ARCH 
(GARCH). In this work, to analyze the VaR model, the accuracy and precision were 
used. Estimation of the accuracy and precision was done under the three approaches 
for four European banks at 95 and 99% confidence levels. The percentage crossings 
and Kupiec POF were used to judge the model accuracy, whereas the ratio of the 
maximum and minimum VaR estimates, and the spread between the maximum and 
minimum VaR estimates were used to estimate the model risk. This was achieved by 
changing input parameters, specifically, the estimation time window (125, 250, 500 
days). Implications/Recommendations: The accuracy alone is not sufficient to evalu-
ate a model and precision is also required. The temporal evolution of the precision 
metrics showed that the VaR approaches were inconsistent under different market 
conditions. This article focuses on the accuracy and precision concepts applied to 
estimate model risk of the Value at Risk (VaR). VaR is the foundation for sophistica-
ted risk metrics, including systemic risk measures like Marginal Expected Shortfall 
and Delta Conditional Value at Risk. Thus, understanding the risk associated with 
the use of VaR is crucial for finance practitioners.

Keywords: VaR, Monte Carlo, model risk, precision, historical simulation, GARCH
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